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Join operation is arguably the most important operation in relational DBMS. It offers the
ability to combine two or more relations (tables) together so that the users can organize
their data in multiple relations which more accurately reflects the data model in reality,
eliminates duplicated data, ensures consistency, and so forth. It is also one of the most
crucial operations in terms of performance because join appears in virtually every SQL
query, and a bad implementation of join can be devastatingly slow. Among various join
algorithms, hash join has been one of the most well-studied and widely-adopted
algorithms due to its conceptual simplicity and its linear time complexity with respect to
the number of pages in both relations (in a disk-oriented context).

Hash Func *Performance comparison between parallelism patterns reveals that partitioned hash
g(key) @ @ ST joins are optimal for uniform workloads due to lower cache miss rates, whereas shared
Outer Table hash joins are more effective under skewed workloads due to better cache locality and

less joins, sensitivity to data distribution.
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Probe Phase Hash Buckets *Dynamic task scheduling significantly enhances the performance of both shared and
partitioned hash particularly under skewed workloads, by better balancing thread
> Build Phase e workloads and minimizing execution times across all phases of the hash join process.
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Shared vs. Partitioned Hash Tables (see the figure on the right)
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* Shared Hash Table: Utilizes a single hash table accessible by all threads during build
and probe phase.

Probe Phase Hash Buckets

Partitioned Hash Table: First divide the inner and outer table into partitions (partition
phase), then threads pick partitions and do the build and probe phase.
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Parameter Name | Default Value | Explanation haritign Phage V.S Effect of Partition Number on Performance

inner_tuple_num | 16,000,000 Number of tuples in the inner relation.

outer_ratio 16 The ratio of the number of tuples in the outer rela- Inner Table —e— Build —a— Total

—»— Probe
tion to the inner relation. Sh ild i b i , r
i ared Hash Table Build Baseline Probe Baseline Total Baseline
batch_size 100,000 Number of tuples in each batch.

partition num 4096 Number of partitions x Can not Flt in CaChe Speedup by Number of Partitions Speedup by Number of Partitions Speedup by Number of Partitions

Out ut Table (Uniform Distribution) (Low Skew Distribution) (High Skew Distribution)
bucket_num 1,048,576 Total number of buckets in the hash table(s). P
threads 8 Number of threads to use.
Table 1: Default Parameters Explanation
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Probe Phase L e e Cache Miss Rate by Number of Partitions Cache Miss Rate by Number of Partitions Cache Miss Rate by Number of Partitions
(Uniform Distribution) (Low Skew Distribution) (High Skew Distribution)
Hash Buckets

Pittsburgh Supercomputing Center (PSC)

CPU AMD EPYC 7742
Cores 64

Cache Size 256MB L3
Memory 256GB

Table 2: Hardware Specification
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Speedup of Parallelism

Method 2
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Parallel hash joins achieve optimal speedup with increasing thread counts, peaking at
7X speedup for the probe phase when utilizing 8 threads under uniform data
distribution and dynamic task scheduling. Speedup benefits diminish beyond the

maximal hardware parallelism due to overhead from context switching. Cache Analysis Synch ronization Overhead Analysis
The probe phase demonstrates higher speed efficiency due to its read-only data

access pattern requiring no synchronization, contrasting with the build phase that configuration USD LSD HSD configuration UQ USD USS UPD UPS

faces significant synchronization overhead from frequent locking and unlocking of hash cache missnum 2,513,975,929 827,780,779 355,003,945 CPU cycle per output tuple 739 802 792 729 646

buckets. Dynamic scheduling enhances speedup across all tested workloads b cache ref num 4,321,685,631 2,236,064,733 1,287,520,618 .
efficiently h\;ndlingimbalancei workloads i i ' cache miss rate >8.17% 37.01% 27.57% configuration tq LSb LSS LPD LPS . N N

conﬁguration UPD LPD HPD CPU CyCle pel‘ Outpllt tllple 599 667 657 834 796 Partition Phase Time Cost by Number of Partitions Partition Phase Time Cost by Number of Partitions Partition Phase Time Cost by Number of Partitions
Uniform Shared Static Low-Skew Shared Static High-Skew Shared Static (Uniform Distribution) (Low Skew Distribution) (High Skew Distribution)

[ ~e="suild [ =" guila [—-Tauia cache miss num 1,201,097,267 1,142,299,850 1,315,174,783 configuration HQ HSD HSS HPD HPS

—= Probe ¢ Probe Bl i cache ref num  5,693,788,141 4,447,116,933 5,037,420,108

| : Zitréficlect Speedup ) : lztréi:tlect Speedup | ::_- :Ztr?:act Speedup CaChe miss rate 21.09% 25.68% 26.10% CPU CyCle per Output tuple 364 414 403 613 600
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Cache miss rates are notably lower in partitioned hash * Partitioned hash joins generally performing better in
joins across all configurations, supporting the design uniform distributions by minimizing thread contention.

principle that smaller, well-sized partitions improve Under low and high skew distributions, shared hash
CaChe effiCiency’ partICUIarly eVIdent In unlform jOins eXhibit Iower SynChronization overhead ComparEd Number of Partitions Number of Partitions Number of Partitions
workload scenarios. to partitioned hash joins. This efficiency is due to better (a) Uniform (b) Low Skew (c) High Skew
— Shared hash joins benefit from increased data skew, wortklo:.d fllls;c]lflk:]l:tlol? argong threads and reduced The choice of partition number in partitioned hash joins is crucial for maximizing
Number of Processes Number of Processes Number of Processes 1 1 1 1fi 1 1 contention in ni sKkewed scenarios. . . . .. . .
(a) Uniform Shared Static (c) Low Skew Shared Static (e) High Skew Shared Static displaying a significant decrease.m cache miss rates as | g. Y | | | | performance, with optimal numbers reducing the largest partition size to improve cache
| | | data becomes more skewed, which enhances temporal Dynamic scheduling strategies typically incur higher CPU fit and minimize cache capacity miss rates.
Uniform Shared Dynamic Low-Skew Shared Dynamic High-Skew Shared Dynamic . )

(=i [ [T cache locality due to the frequent occurrence of hot cycles due to task reassignment overhead but offer

-~ Probe —»— Probe -3~ Probe

e : Empirical analysis demonstrates a non-linear relationship between partition number
el J L e values. beneflts: n b.alancmg workloa(.is across threads, and performance: increasing partitions initially improves performance due to reduced
Conclusion zgﬁifts;g:f their preferable use in varying workload cache miss rates, but excessive partitioning leads to increased cold misses as each

' partition holds fewer tuples.

Shared hash joins excel under skewed data distributions due to balanced workloads, improved cache locality. Optimal partition numbers balance the reduction in capacity misses with the rise in cold
Partitioned hash joins are optimal for uniform data distributions with high cache efficiency. misses. For instance, the build phase speedup peaks at partition numbers like 1024 and

Effective database systems should dynamically select hash join strategies based on workload to optimize performance. 2048, highlighting the need to tailor partition numbers to specific workload
characteristics to optimize hash join performance.
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High-quality dynamic task scheduling is essential to address workload imbalances in partitioned hash joins.
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