
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Join operation is arguably the most important operation in relational DBMS. It offers the 
ability to combine two or more relations (tables) together so that the users can organize 
their data in multiple relations which more accurately reflects the data model in reality, 
eliminates duplicated data, ensures consistency, and so forth. It is also one of the most 
crucial operations in terms of performance because join appears in virtually every SQL 
query, and a bad implementation of join can be devastatingly slow. Among various join 
algorithms, hash join has been one of the most well-studied and widely-adopted 
algorithms due to its conceptual simplicity and its linear time complexity with respect to 
the number of pages in both relations (in a disk-oriented context).

Introduction

Methodology

Shared vs. Partitioned Hash Tables (see the figure on the right)
• Shared Hash Table: Utilizes a single hash table accessible by all threads during build 

and probe phase.
• Partitioned Hash Table: First divide the inner and outer table into partitions (partition 

phase), then threads pick partitions and do the build and probe phase.

{zhidongg, yeyuan3}@andrew.cmu.edu

Zhidong (David) Guo, Ye (Ethan) Yuan

Reevaluating In-Memory Parallel Hash Join Designs

Experiment Setup

• Parallel hash joins achieve optimal speedup with increasing thread counts, peaking at 
7X speedup for the probe phase when utilizing 8 threads under uniform data 
distribution and dynamic task scheduling. Speedup benefits diminish beyond the 
maximal hardware parallelism due to overhead from context switching.

• The probe phase demonstrates higher speed efficiency due to its read-only data 
access pattern requiring no synchronization, contrasting with the build phase that 
faces significant synchronization overhead from frequent locking and unlocking of hash 
buckets. Dynamic scheduling enhances speedup across all tested workloads by 
efficiently handling imbalanced workloads.

Speedup of Parallelism

Comparison of Parallelism Patterns
•Performance comparison between parallelism patterns reveals that partitioned hash 
joins are optimal for uniform workloads due to lower cache miss rates, whereas shared 
hash joins are more effective under skewed workloads due to better cache locality and 
less joins, sensitivity to data distribution.
•Dynamic task scheduling significantly enhances the performance of both shared and 
partitioned hash particularly under skewed workloads, by better balancing thread 
workloads and minimizing execution times across all phases of the hash join process.

• Cache miss rates are notably lower in partitioned hash 
joins across all configurations, supporting the design 
principle that smaller, well-sized partitions improve 
cache efficiency, particularly evident in uniform 
workload scenarios.

• Shared hash joins benefit from increased data skew, 
displaying a significant decrease in cache miss rates as 
data becomes more skewed, which enhances temporal 
cache locality due to the frequent occurrence of hot 
values.

Cache Analysis Synchronization Overhead Analysis 

• Partitioned hash joins generally performing better in 
uniform distributions by minimizing thread contention.

• Under low and high skew distributions, shared hash 
joins exhibit lower synchronization overhead compared 
to partitioned hash joins. This efficiency is due to better 
workload distribution among threads and reduced 
contention in highly skewed scenarios.

• Dynamic scheduling strategies typically incur higher CPU 
cycles due to task reassignment overhead but offer 
benefits in balancing workloads across threads, 
suggesting their preferable use in varying workload 
conditions.

Effect of Partition Number on Performance

Conclusion

• The choice of partition number in partitioned hash joins is crucial for maximizing 
performance, with optimal numbers reducing the largest partition size to improve cache 
fit and minimize cache capacity miss rates.

• Empirical analysis demonstrates a non-linear relationship between partition number 
and performance: increasing partitions initially improves performance due to reduced 
cache miss rates, but excessive partitioning leads to increased cold misses as each 
partition holds fewer tuples.

• Optimal partition numbers balance the reduction in capacity misses with the rise in cold 
misses. For instance, the build phase speedup peaks at partition numbers like 1024 and 
2048, highlighting the need to tailor partition numbers to specific workload 
characteristics to optimize hash join performance.

REFERENCES
[1] Blanas, Spyros, Yinan Li, and Jignesh M. Patel. "Design and evaluation of main memory hash join algorithms for multi-core CPUs." Proceedings of the 2011 ACM 
SIGMOD International Conference on Management of data. 2011.
[2] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for the new bottleneck: Memory access. In VLDB, pages 54–65, 1999.
[3] J. Cieslewicz and K. A. Ross. Data partitioning on chip multiprocessors. In DaMoN, pages 25–34, 2008.

• Shared hash joins excel under skewed data distributions due to balanced workloads, improved cache locality.
• Partitioned hash joins are optimal for uniform data distributions with high cache efficiency.
• Effective database systems should dynamically select hash join strategies based on workload to optimize performance.
• High-quality dynamic task scheduling is essential to address workload imbalances in partitioned hash joins.
• Partition number is crucial. Too few partitions increase overhead and cache misses, while too many amplify cold misses.
• The probe phase (more computationally intensive), requires optimized hash bucket structures for better read performance.


